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DSMC Simulations of Shock Interactions about Sharp
Double Cones

James N. Moss

NASA Langley Research Center, Hampton, VA 23681-2199, USA

Abstract. This paper presents the results of a numerical study of shock interactions resulting from Mach
10 flow about sharp double cones. Computations are made by using the direct simulation Monte Carlo
(DSMC) method of Bird. The sensitivity and characteristics of the interactions are examined by varying
flow conditions, model size, and configuration. The range of conditions investigated includes those for
which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the
Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel.

INTRODUCTION

Shock/shock and shock/boundary layer interactions continue to receive considerable attention because of
their impact on the performance and design requirements of hypersonic vehicles. Augmented aerothermal
loads and degraded control surface effectiveness are often unavoidable because of these interactions. Therefore,

techniques that accurately predict these interactions and their consequences are required for vehicle design.
Careful comparisons and analysis of computational and experimental results are essential in establishing con-

fidence in the prediction tools. The current study provides numerical results for hypersonic low-density flows
where the resulting database can be used for guidance and comparison with future experiments.

The current investigation focuses on Mach 10, low Reynolds number (Re_,d < 45 000) flows. For the double-
cone models investigated, the first cone half angle is 25 °, while the second cone half angle is either 55 ° or

65% These double cone geometries produce strong shock interactions because the attached shock from the first
cone interacts with the detached bow shock from the second cone. Also, the outer shocks are modified by the

separation and reattachment shocks where the extent of flow separation is significant for several combinations
of model size and flow conditions. Two of the flow conditions investigated are for experiments that have been

or will be performed. The calculations for the 25o/65 ° model are for nominal flow conditions produced by
the ONERA R5Ch wind tunnel. Calculations for a range of model diameters are made that encompass the

diameter for which an experiment is scheduled. Calculations performed for the 25°/55 ° model configuration
include those for the model size and both actual and nominal low Reynolds number test conditions produced

in the CUBRC LENS tunnel. Also, the flow about a smaller scaled model of the 25°/55 ° cone is calculated
for both R5Ch and LENS flow conditions. The calculations are performed by using the direct simulation

Monte Carlo (DSMC) method of Bird [1]. Results presented emphasize the sensitivity of the surface quantities
(heating, pressure, and skin friction) to model configuration, size, flow conditions, and grid resolution.

RESULTS OF CALCULATIONS FOR SHARP DOUBLE CONES

Table 1 provides a summary of the free-stream and surface boundary conditions used in the current study.
Information concerning model size, configuration, and locations and extent of separation are included in Table

2. Data for the extent of separation are presented in terms of two dimensions: (1) the distance measured
along the x-axis of the model and (2) the wetted distance along the surface s. The selection of the grid and

numerical parameters involved a series of calculations for each test condition. The grid refinement procedure
was influenced by the experience of Refs. 2 and 3, which demonstrated a very sensitive dependence of separation



TABLE 1. h'ee-stream and surface a conditions.

Vo, po × 104, no × 10 -22, Too, Po, Tw,

Facility m/s kg/m 3 m -3 K N/m 2 Gas Moo K

ONERA R5Ch b 1 418.7 4.303 0.895 51.0 6.30 Air 9.91 293.0

CUBRC LENS-A c 2 713.6 6.808 1.463 194.1 39.21 N2 9.56 297.8

CUBRC LENS-B 2 657.9 7.782 1.673 198.9 45.93 N2 9.25 293.0
CUBRC LENS-C 2 713.6 8.647 1.858 194.1 49.80 N2 9.56 293.0

a Diffuse with full thermal accommodation.
b Denotes nominal test conditions.

c A denotes actual test conditions, B denotes nominal pretest conditions, and C denotes fictitious

conditions (adjustment of density) to achieve a specific Reynolds number.

TABLE 2. Results of DSMC calculations for sharp double cones.

Cone parameters a Test Separation Reattachment

Angles L1, mm d, mm Grid b condition Reo,a xs, mm XR, mm /kx/L1 /ks/L1
25 °/65 °

25 °/65 °

25 °/65 °

25 °/65 °

25 °/65 °

25 °/65 °
25 °/65 °

25 °/65 °c

250/55°
250/55°
250/55°

25o/55 od

250/55°
250/55°
250/55°

25.0 66.4 F R5Ch 12 360 13.86 25.95 0.484 0.700

25.0 66.4 I R5Ch 12 360 13.86 25.87 0.480 0.692

25.0 66.4 C R5Ch 12 360 14.34 25.45 0.444 0.631

25.0 66.4 VC R5Ch 12 360 15.50 24.38 0.355 0.479

30.1 80.0 C R5Ch 14880 16.72 31.14 0.478 0.691

40.0 106.3 C R5Ch 19 775 20.80 42.33 0.538 0.786
45.5 121.0 C R5Ch 22 500 21.41 50.63 0.642 0.969

50.0 132.9 I R5Ch 24 719 21.31 59.43 1.109 1.198

25.8 66.4 I R5Ch 12 360 21.17 25.36 0.162 0.229

25.8 66.4 I LENS-A 9 730 21.75 24.61 0.111 0.154

25.8 66.4 I LENS-C 12 360 21.45 24.74 0.127 0.179

101.6 261.8 I LENS-A 38 340 80.02 99.87 0.196 0.265

101.6 261.8 I LENS-B 42 150 80.01 100.10 0.198 0.269

101.6 261.8 C LENS-B 42 150 80.60 99.17 0.182 0.246

101.6 261.8 VC LENS-B 42 150 84.00 97.81 0.136 0.186

a L1 is wetted length of first cone and d is maximum diameter.
b Qualitative description of grid resolution: F-fine, I-intermediate, C-coarse, and VC-very coarse.
¢ From Ref. 3.

d Only case for which experimental measurements have been made--data to be released later.

extent to grid refinement. The Reynolds number is based on free-stream conditions with a characteristic length

d, the maximum diameter of the model. For the R5Ch flow conditions, the Sutherland viscosity has been used in

defining the Reynolds number to be consistent with experimentally reported values. For the LENS conditions,

the variable hard sphere model for viscosity (temperature exponent of 0.75 and a reference temperature of

300 K) is used in specifying Reynolds number.

25o/65 ° Cones at Mach 9.9 Air Flow--R5Ch Conditions

Calculations presented in this section are an extension of those reported in Refs. 2 and 3, where the flow

about a sharp double-cone model (25o/65 °) with a maximum diameter of 132.893 mm was calculated with

both DSMC and Navier Stokes codes for Reynolds numbers ranging from 24 719 to 247. This Reynolds number

range was achieved by using the R5Ch nominal free-stream flow conditions (highest Reynolds number) and

then parametrically reducing the free-stream density. The current results are those for smaller scale models

with diameters between 66.4 and 121.0 mm. The maximum diameter of the current model configuration that

can be tested in the R5Ch wind tunnel is near 70 mm, or about half of the model size used in the previous

studies. The configuration is such that the length of the first and second cones are equal (L1 -- L2, Fig. la).

Figures 1 and 2 present representative results of the calculations. The nature of the shock interactions is

demonstrated in Fig. la by using the fine grid results for the 66.4-mm-diameter model, a model size that

the ONERA R5Ch wind tunnel should be able to accommodate. Selected Mach contours are shown where a

large subsonic region, indicated by the darker shading, is located in front of the second cone. Locations for
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FIGURE 1. Fine-grid results for 25°/65 ° double cone at R5Ch flow conditions; d = 66.45 mm.
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FIGURE 2. 25°/65 ° double-cone results at R5Ch flow conditions.

flow separation and reattachment along the surface are denoted by S and R, respectively. Also evident is the
influence of the separation shock on the oblique shock that is produced by the first cone, resulting in a triple
point (T. P.) followed by a stronger transmitted shock that interacts with the stronger bow shock of the second

cone--creating a second triple point. These shock/shock and shock/boundary layer interactions are induced by
the larger cone and produce a significant separation region characterized by a single vortex embedded within

the subsonic region near the intersecting cones. The general flow structure evident for the 66.45-mm-diameter
model is that found for the larger 25o/65 ° models. However, when the model diameter is increased to 132.9 mm

(results from Ref. 3 and included in Table 2), secondary vortices were evident, and a Navier-Stokes computation
indicated some unsteadiness (small oscillations of separation location). Undoubtedly, the flow would become



unsteadyfor largermodels,asisdemonstratedbythe rapidgrowthof theextentofseparationpresentedin
Fig.2.

Alsoincludedin Fig. la is informationconcerningthe computationaldomain,whichconsistedof eight
arbitraryregions.Eachregionis subdividedintocells,andthecellsin selectedregionsaresubdividedinto
subcellsto enhancethespatialresolutionusedto selectcollisionpartners.Timestepinformationfor region
oneandthetimeintervalfor whichthetime-averagedresultswereobtainedareincludedin Fig. la. Since
thecomputationalregionswerenotrunwithnecessarilythesametimestep,it wasessentialthatsteadystate
conditionsbeestablishedbeforegeneratingthefinaltime-averagedresults.Steadystatewasassumedto occur
whenthetotal moleculesusedin thesimulation,averagemoleculesin eachregion,andlocationsandsizeof
theseparationregionbecameconstantwhensampledoversomesignificanttimeinterval.

Figurelb presentsthecorrespondingsurfaceresults--heatingrate,pressure,andskinfriction--forthe66.45-
mm-diametermodel.Resultsarefor thefine-gridsolution,the onlyconditionfor whichthesurfaceresults
andextentofseparationindicategridindependence(Table2)--fineandintermediategridresultsarethesame
for surfacequantities.(Additionalgrid refinementis necessaryto determineif the remainingintermediate
gridresultsaregridindependent.)Thequalitativefeaturesareconsistentwithexperimentalmeasurements
[4]for laminarseparatedflows.First, theseparationpositionis in closeagreementwith the locationof the
first inflectionpoint(maximumslope)oftheinitial pressureriseandthelocationwheretheheattransferrate
decreasessignificantlywith respectto the singleconeresults.Second,thepressurereachesa plateaufor a
significantlylargeseparationregion,whiletheheattransferissignificantlyreduced.Third,at orprecedingthe
intersectionofthetwocones,theheattransferexperiencesaminimumandthenincreasesrapidly,asdoesthe
pressure,with increasingdistancealongthesecondcone.

Figure2presentsresultsthathighlighttheeffectofmodelsizeorReynoldsnumberonthecalculationwhere
thedatapresentedareforcoarsegrids(comparablegridresolutionforthefourcases).Heattransfercoefficient
resultsfor the four modelsizesinvestigated(Fig. 2a)showthe expectedtrendof decreasingmagnitude
with increasingReynoldsnumber.Also,asexpectedfor laminarflow, the extentof separationincreases
(earlierseparationanddelayedreattachment),ascanbeinferredfromFig. 2a,andis explicitlyshownbythe
nondimensionalseparationdataincludedin Table2.

Thesensitivityof theextentof separationto Reynoldsnumberispresentedin Fig. 2b,wherethecurrent
data(coarsegridresults)arethoseobtainedbyvaryingthemodelsize.ThedatafromRef.3 wereobtained
byvaryingthefree-streamconditions(density)for afixedmodelsize(d = 132.89mm). Thetwodatasets
showa consistenttrend:theextentofseparationincreasingwithReynoldsnumberandaveryrapidincrease
in separationneara Reynoldsnumberof 25000.Fortheconditionsinvestigated,thecalculationsshowthat
separationpersistsfor Reynoldsnumbersaslowasabout800.

25°/55° Cone With a Diameter of 66.45 mm--R5Ch and LENS Conditions

Toclarifytheeffectof differentexperimentaltestconditionsonsurfaceandflow-fieldfeatures,a common
modelisusedfor makingcalculationsat bothONERAR5ChandLENSnominaltestconditions.Themodel
configurationisonethat hasbeenusedin theCUBRCtests,but themaximummodeldiameteris66.45mm
ratherthanthe261.8-mm-diametermodeltested.Figure3presentsinformationconcerningflow-fieldfeatures
andcomputationalparameters,whileFig. 4 providesinformationconcerningsurfaceresultsfor heatingand
pressure.Table2providesinformationconcerningthelocationandextentofseparation.

A 10° reductionin thesecondconehalfanglehasaverypronouncedimpactontheflow-fieldfeaturesforthe
R5Chnominaltestconditions,asisclearlyevidentwhentheresultsofFig. 3aarecomparedwiththoseofFig.
la. Markeddifferencesareevidentforthenatureoftheshock/shockandshock/boundarylayerinteractions,
sizeandlocationofthesubsonicregion,andsizeoftheseparationzone.Whenthecalculationismadeforthe
LENS-Atestconditions(Fig.3b),theshocklayerdisturbanceisslightlysmaller,andthesizeofthesubsonic
regionandtheextentofseparationarenoticeablyreducedwhencomparedwith theresultsfortheR5Chflow
conditions.Thecorrespondingsurfaceresultsfor heatingandpressurecoefficientsareincludedin Fig. 4.
Dataarealsoincludedfora flowconditionreferredto asLENS-C,whereanadjustmentto thedensityof the
LENS-Anominaltestconditionismadeto producea largerfree-streamReynoldsnumber,avalueequalto
that of theR5Chtest condition.Thenondimensionalheatingandpressureresultspresentedin Fig. 4show
to whatextentthedistributionsareconsistent--verygoodagreementfor pressurewith theexceptionof the
stronginteractionregion,whilethat for heatingismorequalitative.Forthesurfaceregionwhereseparation
occurs,theheatingandpressurecoefficientvaluesaremuchlargerfortheLENStestconditionsthanthosefor



theR5Chconditions.Of course,thedimensionalheatingandpressurevaluesaremuchlargerfor theLENS
conditions,aboutanorderof magnitudedifferencein heatingrates.Theeffectofincreasingthefree-stream
densityofthe LENS-Acondition,to producetheLENS-Cconditions(sameReynoldsnumberasthe R5Ch
case),isclearlyevidentin theCH distributions and extent of separation (Table 2) but has a minor effect on

the C,'pdistribution. However, the present results for the surface coeificients (friction not shown) indicate that
the Reynolds number is not the only controlling parameter.

Region Cells Subcells/Cell Mach 9.91 air .Region Cells Subcells/Cell
1 45 x 55 1 x 2 25°/55 ° double cone Mach 9.56 nitrogen

1 45 x 75 1 x 2 25°/55 ° double cone
0.05 2 45 x 75 5 x 1 d = 66.45 mm 0.05 2 45 x 95 5 x 2 d = 66.45 mm
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Fig. 3a. RgCh conditions.
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Fig. 3b. LENS-A conditions.

FIGURE 3. Flow structure for 250/55 ° double cone; d = 66.45 mm.
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FIGURE 4. Surface results as a function of test conditions for 250/55 ° double cone; d ----66.45 mm.
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FIGURE 5. Effect of grid on surface results for 250/55 ° double cone; d = 261.8 mm and LENS-B flow conditions.
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250//55 ° Cone at Mach 9.6 Nitrogen Flow-- LENS Conditions

This section focuses on results for the CUBRC LENS flow conditions where the maximum model diameter

is 261.8 mm. The initial calculations were made for pretest nominal conditions--denoted as LENS-B test

condition. A grid sensitivity study was conducted, and the results of this study, as it impacts separation and
reattachment locations, are listed in Table 2. The sensitivity on heating and pressure distributions is presented

in Fig. 5. The finest grid used in this exercise (described as intermediate I, since grid independence was not
demonstrated) was then used to make a calculation for the actual test condition (LENS-A), and selected results

are presented in Fig. 6. The general features of the shock layer structure are given in Fig. 6a where selected
Mach contours are included, along with details of the numerical parameters used in the simulation. The impact
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FIGURE Y. Interaction region results for 250/55 ° double cone; d = 261.8 mm and LENS-A flow conditions.

of model size and flow conditions on shock layer features can be observed by comparing these results with those

given in Fig. 3. Values for the surface quantities are shown in Fig. 6b. For the surface pressure distribution, the

calculated values outside the region influenced by the shock/boundary layer interactions are in close agreement
with the inviscid cone values (Ref. 5) of 948 N/rn 2 along the 25 ° cone and 3710 N/rn 2 along the 55 ° cone.
Opportunities will exist for comparison with the experimental measurements that have been completed when
the CUBRC data are released.
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FIGURE 8. Interaction region results for 250/55 ° double cone; d = 261.8 mm and LENS-A flow conditions.

Figures 7 and 8 present details concerning the flow-field structure for the CUBRC test case where the focus

is on the interaction region. From the density and scalar pressure contours presented in Figs 7a and 7b,
respectively, one gets an appreciation of the compression and large gradients that occur near reattachment--



maximumvaluesfor densityequal155timesfree-streamandmaximumscalarpressure(displacedasubstantial
distancefromthesurface)equal319timesfreestream.Theoverallkinetictemperature,denotedbyT in Fig.
8a,experiencesamaximumvalueof about1000K alongmostofthefirst cone,butvaluesaslargeas3200K
occuralongthesecondcone.(Forcomparison,thecorrespondingmaximumvaluesforthecalculationpresented
inFig. 1are30,190,and974K, respectively.)Moredetailsconcerningthethermalstructureofthefloware
presentedin Fig. 8b,wheretranslationalandinternaltemperature(rotationalandvibrationalcontributions,
seeRef.1)profilesareshown.Thesetemperatureprofilesareapproximatelynormalto thesurface,andresults
areincludedforthreesurfacelocations:separation,conejuncture(normalto the25° cone),andreattachment.
Thecurrentresultsshowthatthenonequilibriumeffectsareconfinedprimarilyto theouterbowshockcrossings
withcloseagreementbetweentranslationalandinternaltemperaturesfor theremainderof theshocklayer.
Evidentfromtheflowstructureresultsaretheexistencesoftwotriplepoints,aregionofseparatedflowwith
asinglevortex,twosubsonicregionsalongthesecondconethat sandwichasupersonicregion,andaflowthat
forthemostpart is in thermalequilibrium.Reattachmentoccurssubsonically.

CONCLUDING REMARKS

Results of a computational study are presented for Mach 10 flow about sharp double cones where the

combination of model configurations, size, and flow conditions produce a significant range of shock/shock
and shock/boundary layer interactions. The computations are made with the direct simulation Monte Carlo

(DSMC) method, hence, low Reynolds number flows. The results presented provide insight into the nature of
the shock interactions, their impact on surface quantities, and the sensitivity of the results to computational

parameters for flow conditions that can be produced in current ground-based facilities. Extent of separation as
a function of free-stream Reynolds number is demonstrated, and the current results are shown to be consistent

with previous calculations. Computations are made for a common model size and configuration at conditions
that can be produced in a hypersonic cold flow wind tunnel and a much higher enthalpy impulse facility--
contrasting computational results for substantially different flow conditions. Opportunities should exist for

comparing the current results with experimental measurements for surface heating and pressure distributions.
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